Cambridge website for Synthetic Biology Resources
 
synbio logo2_100a

Compiled by Jim Haseloff at the University of Cambridge
This site contains details of recent papers and activity in Synthetic Biology, with particular emphasis on: (i) development of standards in biology and DNA parts, (ii) microbial and (iii) plant systems, (iv) research and teaching in the field at the University of Cambridge, (v) hardware for scientific computing and instrumentation, (vi) tools for scientific productivity and collected miscellany. 

 

www.synbio.org.uk

SpannerPlantLogo70 logoplate70  

SynBio calendar

  • 18 Feb

    Technology is driving revolutionary changes in biology. Over the past decade, scientists and engineers have begun to define the path forward in the genomic era. Systems Biology has arisen...

  • 17 Mar

    Now that we know the sequences of many genomes, from a wide variety of organisms and even from individuals with unique characteristics, many researchers have turned to making intentional...

  • 09 Apr

    The developments within synthetic biology promise to change the world in significant ways. Yet synthetic biology is largely unrecognized within conservation. The purpose of the meeting...

  • 09 Jun

    (Re-)constructing and Re-programming Life This conference will provide an in-depth discussion forum among practitioners of the various fields underlying Synthetic Biology. It aims to...

  • 09 Jul

    The BioBricks Foundation is pleased to announce The BioBricks Foundation Synthetic Biology 6.0 Conference (SB6.0), which will take place on July 9-11, 2013 at Imperial College, London,...

  • 30 Jul

    This course will focus on how the complexity of biological systems, combined with traditional engineering approaches, results in the emergence of new design principles for synthetic...

18 Feb - 23 Mar
09 Apr - 15 Jun
09 Jul - 13 Aug

SynBio Google newsfeed

Loading...
Synbio news:
25 Feb 2011

 

 Craig Venter: On the verge of creating synthetic lifeTwo rather contrasting videos on synthetic biology this month. In the first videocast, released by TED, Craig Venter exposes his grand vision of synthetic genomics. He insists on the notion of 'combinatorial genomics', that will combine the power of large scale DNA synthesis ('robots that can make a million chromosomes a day') with a database of 20 million genes, 'the design components of the future'. This approach, a pragmatic mixture of rational function-oriented design and empirical large-scale selection, is envisioned to prepare a modern 'Cambrian explosion' of new synthetic species. It is good to see Craig Venter laughing when announcing casually the 'modest goal of replacing the entire petro-chemical industry'. In any case, Craig Venter appears to be more concerned that the technology may not develop sufficiently rapidly to match the urgency and scale of the major ecological and medical challenges faced by our planet than by potential threats represented by harmful biohacking and bioterror.

webcast of the NSABB Meeting, Day 1The second video, admittedly less entertaining, is a recording of the recent deliberations of the National Science Advisory Board for Biosecurity (NSABB). In his presentation entitled 'Assessing Biosecurity Concerns Related to Synthetic Biology', David Relman presents some preliminary findings and recommendations of the Working Group on Synthetic Genomics (jump to 1hr:34min:37sec). It is interesting to see that no consensus definition of synthetic biology exists among the various practitioners of the field, who all use different blends of the typical bottom-up engineering approach assembling circuits from standard components and top-down strategy, based on the modifications of existing genomes. Beyond the lack of definition, the current ability to predict biological functions from sequence (eg virulence) remains very limited complicating the possibility of realistic risk assessment. Finally, the development of synthetic biology can be seen as an extension of the success of 'kit-based' molecular biology, which facilitates access of these technologies to groups outside the traditional Life Sciences communities and institutions, making the mission of oversight, outreach and eduction more challenging. David Relman also clearly emphasizes the importance of not discouraging the enthusiasm directed towards potentially beneficial research and applications by overzealous oversight and regulations.

The intersection between the two talks above was perhaps made when the question of virulence was raised (jump to 1hr:59min:35sec). The fraction of pathogenic agents is very small compared to the number of existing species, a point also made by Craig Venter, and the rate of appearance of new pathogens is low. The idea was then raised as whether it would be possible to roughly estimate the risk of creating synthetic pathogens by calculating the likelihood that the amount of natural recombination responsible for the emergence of new pathogens 'in the wild' could be matched by an equivalent amount of experimental recombination in the laboratory. In other words, is there any way to estimate the probability that new forms of virulence could emerge from the announced synthetic 'Cambrian explosion'?

"

 

(Via The Seven Stones.)

PhD Studies in Cambridge

The Board of Graduate Studies manages admission of the University's graduate students. Prospective students should start here - for an introduction to the University of Cambridge, the courses we offer, how to apply for postgraduate study, how your application will be processed, and immigration and other important information.

Click here for more information about Cambridge

 

Weather in Cambridge

°F°C
CAMBRIDGE
invalid location provided