Cambridge website for Synthetic Biology Resources
 
synbio logo2_100a

Compiled by Jim Haseloff at the University of Cambridge
This site contains details of recent papers and activity in Synthetic Biology, with particular emphasis on: (i) development of standards in biology and DNA parts, (ii) microbial and (iii) plant systems, (iv) research and teaching in the field at the University of Cambridge, (v) hardware for scientific computing and instrumentation, (vi) tools for scientific productivity and collected miscellany. 

 

www.synbio.org.uk

SpannerPlantLogo70 logoplate70  

SynBio calendar

  • 18 Feb

    Technology is driving revolutionary changes in biology. Over the past decade, scientists and engineers have begun to define the path forward in the genomic era. Systems Biology has arisen...

  • 17 Mar

    Now that we know the sequences of many genomes, from a wide variety of organisms and even from individuals with unique characteristics, many researchers have turned to making intentional...

  • 09 Apr

    The developments within synthetic biology promise to change the world in significant ways. Yet synthetic biology is largely unrecognized within conservation. The purpose of the meeting...

  • 09 Jun

    (Re-)constructing and Re-programming Life This conference will provide an in-depth discussion forum among practitioners of the various fields underlying Synthetic Biology. It aims to...

  • 09 Jul

    The BioBricks Foundation is pleased to announce The BioBricks Foundation Synthetic Biology 6.0 Conference (SB6.0), which will take place on July 9-11, 2013 at Imperial College, London,...

  • 30 Jul

    This course will focus on how the complexity of biological systems, combined with traditional engineering approaches, results in the emergence of new design principles for synthetic...

18 Feb - 23 Mar
09 Apr - 15 Jun
09 Jul - 13 Aug

SynBio Google newsfeed

Loading...
Synbio news:
4 Apr 2012

Publication Date: 2012 Mar 27 PMID: 22454498
Authors: Callura, J. M. - Cantor, C. R. - Collins, J. J.
Journal: Proc Natl Acad Sci U S A

A key next step in synthetic biology is to combine simple circuits into higher-order systems. In this work, we expanded our synthetic riboregulation platform into a genetic switchboard that independently controls the expression of multiple genes in parallel. First, we designed and characterized riboregulator variants to complete the foundation of the genetic switchboard; then we constructed the switchboard sensor, a testing platform that reported on quorum-signaling molecules, DNA damage, iron starvation, and extracellular magnesium concentration in single cells. As a demonstration of the biotechnological potential of our synthetic device, we built a metabolism switchboard that regulated four metabolic genes, pgi, zwf, edd, and gnd, to control carbon flow through three Escherichia coli glucose-utilization pathways: the Embden-Meyerhof, Entner-Doudoroff, and pentose phosphate pathways. We provide direct evidence for switchboard-mediated shunting of metabolic flux by measuring mRNA levels of the riboregulated genes, shifts in the activities of the relevant enzymes and pathways, and targeted changes to the E. coli metabolome. The design, testing, and implementation of the genetic switchboard illustrate the successful construction of a higher-order system that can be used for a broad range of practical applications in synthetic biology and biotechnology.

post to: CiteULike

Genetic switchboard for synthetic biology applications.

(Via PNAS.)

PhD Studies in Cambridge

The Board of Graduate Studies manages admission of the University's graduate students. Prospective students should start here - for an introduction to the University of Cambridge, the courses we offer, how to apply for postgraduate study, how your application will be processed, and immigration and other important information.

Click here for more information about Cambridge

 

Weather in Cambridge

°F°C
CAMBRIDGE
invalid location provided